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ABSTRACT 

Let G be an algebraic group over a field k. We call g E G(k) real if g is 
conjugate to g-i in G(k). In this paper we study reality for groups of type 
G2 over fields of characteristic different from 2. Let G be such a group 

over k. We discuss reality for both semisimple and unipotent elements. 

We show that a semisimple element in G(k) is real if and only if it is a 

product of two involutions in G(k). Every unipotent element in G(k) is a 
product of two involutions in G(k). We discuss reality for G2 over special 

fields and construct examples to show that reality fails for semisimple 

elements in G2 over Q and ~. We show that semisimple elements are 

real for G2 over k with ed(k) _~ I. We conclude with examples of nonreal 

elements in G2 over k finite, with characteristic k not 2 or 3, which are 

not semis imple  or un ipo ten t .  

1. In troduct ion  

Let G be an algebraic group over a field k. It is desirable, from the representation 

theoretic point of view, to study conjugacy classes of elements in G. Borrowing 

the terminology from ([FZ]), we call an element g E G(k) real if g is conjugate 

to g-1 in G(k). An involution in G(k) is an element g E G(k) with g2 = 1. 

Reality for classical groups over fields of characteristic ~ 2 has been studied 

in [MVW] by Moeglin, Vign~ras and Waldspurger. That every element of a 

symplectic group over fields of characteristic 2 is a product of two involutions 

is settled in [Nil. Feit and Zuckermann discuss reality for spin groups and 

symplectic groups in [FZ]. It is well known that every element of an orthogonal 

group is a product of two involutions (see [Wa] and [W2]). We plan to pursue 
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this for exceptional groups. In this paper, we study this property for groups of 

type G2 over fields of characteristic different from 2, for both semisimple and 

unipotent elements. By consulting the character table of G2 over finite fields 

in [CR], one sees that reality is not true for arbitrary elements of G2 (see also 

Theorem 6.11 and Theorem 6.12, in this paper). Let G be a group of type G2 

over a field k of characteristic ~ 2. We prove that every unipotent element 

in G(k) is a product of two involutions in G(k). As it turns out, the case 

of semisimple elements in G(k) is more delicate. We prove that a semisimple 

element in G(k) is real in G(k) if and only if it is a product of two involutions 

in G(k) (Theorem 6.3). We call a torus in G indecomposab le  if it cannot be 

written as a direct product of two subtori, decomposab le  otherwise. We show 

that semisimple elements in decomposable tori are always real (Theorem 6.2). 

We construct examples of indecomposable tori in G containing non-real elements 

(Proposition 6.4 and Theorem 6.10). We work with an explicit realization of 

a group of type G2 as the automorphism group of an octonion algebra. It is 

known (Chap. III, Prop. 5, Corollary, [Se]) that for a group G of type G2 over k, 

there exists an octonion algebra ¢ over k, unique up to a k-isomorphism, such 

that G ~ Aut(~), the group of k-algebra automorphisms of ¢. The group G is 

k-split if and only if the octonion algebra ~ is split, otherwise G is anisotropic 

and ¢ is necessarily a division algebra. We prove that any semisimple element 

in G(k) either leaves invariant a quaternion subalgebra or fixes a quadratic~tale 

subalgebra pointwise (Lemma 6.1). In the first case, reality is a consequence 

of a theorem of Wonenburger (Th. 4, [W1]). In the latter case, the semisimple 

element belongs to a subgroup SU(V, h) C G, for a hermitian space (V, h) of 

rank 3 over a quadratic field extension L of k, or to a subgroup SL(3) C G. 

We investigate these cases separately in sections 6.1 and 6.2 respectively. We 

discuss reality for G2 over special fields (Proposition 6.4, Theorem 6.10 and 

Theorem 6.11). We show that for k with cd(k) <: 1 (e.g., k a finite field), every 

semisimple element in G(k) is a product of two involutions in G(k), and hence 

is real (Theorem 6.13). We show that nonreal elements exist in G2 over k finite, 

with characteristic k not 2 or 3 (compare with [CR]); these are not semisimple 

or unipotent. We include a discussion of conjugacy classes of involutions in 

G(k) over special fields. The work of [MVW] has played an important role in 

representation theory of p-adic groups. We hope the results in this paper will 

find applications in the subject. 
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2. T h e  g r o u p  G2 a n d  o c t o n i o n s  

We begin by a brief introduction to the group ']2. Most of this material is from 

[SV]. Any group G of type G2 over a given field k can be realized as the group 

of k-antomorphisms of an octonion algebra over k, determined uniquely by G. 

We will need the notion of a composition algebra over a field k. 

Definition: A composition algebra E over a field k is an algebra over k, not 

necessarily associative, with an identity element 1 together with a nondegenerate 

quadratic form N on ~, permitting composition, i.e., N(xy)  = N(x )N(y )Vx ,  y E 

The quadratic form N is called the n o r m  on ~. The associated bilinear 

form N is given by N(x ,  y) = N ( x  + y) - N(x )  - N(y) .  Every element x of 

satisfies the equation x 2 - N (x ,  1)x + N(x) l  = 0. There is an involution (anti 

automorphism of order 2) on ~ defined by 2 = N(x ,  1)1 - x .  We call N(x ,  1)1 = 

x + ~ the t r ace  of x. The possible dimensions of a composition algebra over 

k are 1, 2, 4, 8. Composition algebras of dimension 1 or 2 are commutative and 

associative, those of dimension 4 are associative but not commutative (called 

q u a t e r n i o n  algebras), and those of dimension 8 are neither commutative nor 

associative (called o c t o n i o n  algebras). 

Let ~ be an octonion algebra and G = Aut(~) be the automorphism group. 

Since any automorphism of an octonion algebra leaves the norm invariant, 

Aut(~) is a subgroup of the orthogonal group O(E, N). In fact, the automor- 

phism group G is a subgroup of the rotation group SO(N)  and is contained in 

SO(N1) = {t E SO(N)  I t(1) = 1}, where N1 = NI l - .  We have (Th. 2.3.5, 

[sv]) 

PROPOSITION 2.1: The algebraic group G = Aut(¢K), where ¢K = ¢ ® K and 

K is an algebraic closure of k, is the split, connected, simple algebra/c group of 

type G2. Moreover, the automorphism group ~ is detined over k. 

In fact (Chap. III, Prop. 5, Corollary, [Se]), any simple group of type G2 over 

a field k is isomorphic to the automorphism group of an octonion algebra 

over k. There is a dichotomy with respect to the norm of octonion algebras 

(in general, for composition algebras). The norm N is a P f i s t e r  form (tensor 

product of norm forms of quadratic extensions) and hence is either anisotropic 

or hyperbolic. If N is anisotropic, every nonzero element of ¢ has an inverse 

in ¢. We then call ¢ a d iv is ion octonion algebra. If N is hyperbolic, up to 

isomorphism, there is only one octonion algebra with N as its norm, called the 

spli t  octonion algebra. We give below a model for the split octonion algebra 
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over a field k. Let 

{(: v) } 
¢ =  /3 ] a ' / 3 e k ; v ' w e k 3  ' 

where k s is the three-dimensional vector space over k with standard basis. On 

k 3 we have a nondegenerate bilinear form, given by (v, w) 3 ~ i = 1  ViWi~ where 

v = (Vl,V2,V3) and w = (Wl,W2,W3) in k 3 and the wedge product on k 3 is given 

by (u A v, w) = det(u, v, w) for u, v, w E k 3. Addition on ~ is entry-wise and the 

multiplication on ~ is given by 

v' ( - - ' -  0,w') (: ;)(:: . 
\ /3w '  + a 'w  + v A v' / 

The quadratic form N,  the norm on ~, is given by 

An octonion algebra over a field k can be defined as an algebra over k which, 

after changing base to a separable closure ks of k, becomes isomorphic to the 

split octonion algebra over ks (see [T]). 

2.1 OCTONIONS FROM RANK 3 HERMITIAN SPACES. We briefly recall here 

from [T] a construction of octonion algebras from rank 3 hermitian spaces over 

a quadratic~tale algebra over k. First we recall (cf. [KMRT]) 

Detinition: Let C be a finite-dimensional k-algebra. Then E is called an ~tale 

algebra if [ ®k ks - ks x . .- x ks, where ks is a separable closure of k. 

Let L be a quadratic ~tale algebra over k with x ~ • as its standard involu- 

tion. Let (V, h) be a rank 3 hermitian space over L, i.e., V is an L-module of 

rank 3 and h: V x V ) L is a nondegenerate hermitian form, linear in the first 

variable and sesquilinear in the second. Assume that  the discriminant of (V, h) 

is trivial, i.e., A3(V,h) ~ (L, < 1 >), where < 1 > denotes the hermitian form 

(x ,y )  ~ x y  on L. Fixing a trivialization ~: A3(V, h) ~ (L, < 1 >), we define a 

vector product x: V x V --+ V by the identity 

h(u, v x w) = ¢ ( u  A v A w), 

for u, v, w E V. Let ~ be the 8-dimensional k-vector space E -- C(L;  ]7, h, g)) = 

L @ V. We define a multiplication on ~ by 

(a, v)(b, w) = (ab - h(v, w), aw + -bv + v × w), a, b E L, v, w E V. 
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With this multiplication, ~ is an octonion algebra over k with norm N(a, v) = 

NL/k(a) + h(v,v). Note that L embeds in ~ as a composition subalgebra. The 

isomorphism class of ~, thus obtained, does not depend on ¢. One can show 

that all octonion algebras arise this way. We need the following (Th. 2.2, [T]) 

PROPOSITION 2.2: Let (V, h) and (V', h') be isometric hermitian spaces with 

trivia/discriminant, over a quadratic dta/e algebra L. Then the octonion alge- 

bras C ( L; V, h) and C ( L ; V',h') are isomorphic, under an isomorphism restrict- 
ing to the identity map on the suba/gebra L. 

We also need the following 

LEMMA 2.1: Let L be a quadratic field extension of k. Let (V,h) be a rank 

three hermitian space over L with trivia/discriminant. For any trivia/ization ¢ 

of the discriminant, the octonion a/gebra ~(L; v, h, ¢) is a division a/gebra,/f  

and only if  the k-quadratic form on V, given by Q(x) = h(x, x), is anisotropic. 

We note that a similar construction for quaternion algebras can be done, 

starting from a rank 3 quadratic space V over k, with trivial discriminant. Let 

B: V × V ---+ k be a nondegenerate bilinear form. Assume that the discriminant 

of (V, B) is trivial, i.e., A3(V, B) ~ (k, < 1 >), where < 1 > denotes the bilinear 

form (x,y) ~ xy on k. Fixing a trivialization ~p: A3(V,B) ~ (k,< 1 >), we 

defineavector product ×: V × V  ~ Vby the iden t i t y  B(u,v×w) =~(uAvAw),  

for u, v, w E V. Let Q be the 4-dimensional k-vector space Q = Q(k; V, B, ¢) = 

k • V. We define a multiplication on Q by 

(a,v)(b,w) = ( a b - B ( v , w ) , a w + b v + v × w ) ,  a, b C k ,  v, wC V. 

With this multiplication, Q is a quaternion algebra over k, with norm N(a, v) = 
a 2 + B(v, v). The isomorphism class of Q thus obtained does not depend on ¢. 

One can show that all quaternion algebras arise this way. 

PROPOSITION 2.3: Let (V, B) and (V', B') be isometric quadratic spaces with 
trivial discriminants, over a field k. Then the quaternion algebras Q(k; V,B) 

and Q(k; V', B') are isomorphic. 

3. Some subgroups of G2 

Let ¢ be an octonion algebra over a field k of characteristic # 2. Let L be a 

composition subalgebra of ¢. In this section, we describe subgroups of G = 
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Aut (E), consisting of automorphisms leaving L pointwise fixed or invariant. We 

define 

G ( ~ / L )  = {t • Aut(C)Jt(x) = xVx • L} 

and 

G(E,L)  = {t e Aut(E)Jt(x) e LVx • L}.  

Jacobson studied G(~ /L)  in his paper ([J]). We mention the description of these 

subgroups here. One knows that  two-dimensional composition algebras over k 

are precisely the quadratic ~tale algebras over k (cf. Th. 33.17, [KMRT]). Let L 

be a two-dimensional composition subalgebra of E. Then L is either a quadratic 

field extension of k or L ~- k x k. Let us assume first that  L is a quadratic field 

extension of k and L = k(~/), where ~/2 = c.1 ~ 0. Then L z is a left L vector 

space via the octonion multiplication. Also, 

h: L ± x L ± ) L 

h(x ,y )  = g ( x , y )  + ~ - l  g(~/x ,y)  

is a nondegenerate hermitian form on L ± over L. Any automorphism t of E, 

fixing L pointwise, induces an L-linear map tJL±: L ± ~ L ±. Then we have 

(Wh. 3, [J]) 

PROPOSITION 3.1: Let the notation be as fixed above. Let L be a quadratic 

field extension of k as above. Then the subgroup G(E/L)  of  G is isomorphic 

to the unimodular unitary group S U  ( L ±, h) of the three-dimensional space L ± 

over L relative to the hermitian form h, via the isomorphism, 

¢: G(E/L)  ) S U ( L  ±, h) 

t , ~ tlL±. 

Now, let us assume that  L is a split two-dimensional ~tale sublagebra 

of E. Then E is necessarily split and L contains a nontrivial idempotent e. 

There exists a basis B = {1,Ul,Ue,u3,e,  w l ,w2 ,w3}  of E, called the Pe i rce  

basis  with respect to e, such that  the subspaces U = span{ul ,u2 ,u3)  

and W = span{wl ,w2,w3}  satisfy U = {x • ~Jex = 0, xe = x)  and W = 

{x • ~jxe = O, ex = x}. We have, for ~ • G(~/L) ,  x e U, 

0 =  (ex) = = = =  (xe) = 

Hence ~(U) = U. Similarly, ~t(W) = W. Then we have (Th. 4, [J]) 
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PROPOSITION 3.2: Let the notation be as fixed above. Let L be a split quadratic 

6tale subalgebra of ~. Then G(¢/L)  is isomorphic to the unimodular linear 

group SL(U),  via the isomorphism given by 

¢: G(E/L) ----+ SL(U) 

~l ~-~ ~l]v. 

Moreover, ff we denote the matrix of ~l]v by A and that of T1]w by A1, with 

respect to the Peirce basis as above, then tA1 = A -~ . 

In the model of the split octonion algebra as in the previous section, with 

respect to the diagonal subalgebra L, the subspaces U and W are respectively 

the space of strictly upper triangular and strictly lower triangular matrices. The 

above action is then given by 

(: v ) (o  
r] fl = t A_ l w fl . 

We now compute the subgroup G(E, L) of automorphisms of the split octonion 

algebra, leaving invariant a split quadratic 6tale subalgebra. We work with the 

matrix model for split octonions. Up to conjugacy by an automorphism, we 

may assume that the split subalgebra is the diagonal subalgebra. We consider 

the map p on ~ given by 

p:~: ) ¢  

(: :) 
Then p leaves the two-dimensional subalgebra 

invariant and it is an automorphism of ¢, with p2 = 1. 

PROPOSITION 3.3: Let ¢ be the split octonion algebra as above and let L be 

the diagonal split quadratic ~tale subalgebra. Then we have 

G(¢, L) TM G(¢/L)  >4 H, 

where H is the order two group generated by p. 

Proof: Let h E G(E, L). Then hiL ---- 1 or the nontrivial k-automorphism of L. 
In the first case, h E G(E/L) and in the second, hp E G(E/L). Hence h = gp for 
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some g E G(~/L).  Moreover, it is clear that  H normalizes G(~/L) in Aut(~). 

Since H M G(~/L) = {1}, we get the required result. I 

We now give a general construction of the automorphism p of an octonion 

algebra ~, not necessarily split, as above. We first recall the Cayley-Dickson 

Doubling for composition algebras: 

PROPOSITION 3.4: Let ~ be a composition algebra and ~ C ~ a composition 

subalgebra, ~ ~ ~. Let a E ~ ±  with N(a) = -)~ ~ 0. Then ~ l  = ~ ® ~ a  

is a composition subalgebra of ~ of dimension 2 dim(~) .  The product on ~1 is 

given by 

(x + ya)(u + va) = (xu + )~y) + (vx + y~)a, x , y ,u , v  E ~ ,  

where x ~ ~ is the involution on ~ .  The norm on ~1 is given by N(x  + ya) = 

N ( x )  - AN(y) .  

Let E be an octonion algebra, and L C E a quadratic composition subalge- 

b r a o f ~ .  Let a E L ± with N(a) ~ O. Let ~ = L • L a  be the double as 

described above. Then ~ is a quaternion subalgebra of ~. Define pl: ~ -+ ~ by 

pl (x -[- ya) = a(x) + a(y)a, where a denotes the nontrivial automorphism of L. 

Then Pl is an automorphism of ~ ,  and clearly p~ = 1 and Pill ---- a. We now 

repeat this construction with respect to ~ and Pl. Write ~ = ~ ® ~b  for some 

b E ~±,  N(b) ~ O. Define p: ~ -+ ~ by 

p(x + yb) = pl(x) + pl(y)b. 

Then p2 = 1 and PIL = a and p is an automorphism of E. One can prove that  

this construction yields the one given above for the split octonion algebra and 

its diagonal subalgebra. We have 

PROPOSITION 3.5: Let ~ be an octonion algebra, possibly division, and L C 

a quadratic composition subalgebra. Then G(~, L) ~- G(~/L)  )~ H, where H is 

the subgroup generated by p and p is an automorphism ore  with p2 = 1 and p 

restricted to L is the nontrivial k-automorphism of L. 

We mention a few more subgroups of Aut(¢) before closing this section. Let 

C ¢ be a quaternion subalgebra. Then we have, by Cayley-Dickson doubling, 

¢ = ~ ® ~ a  for s o m e a  E ~ ±  with N(a) ~ O. Let C E  Aut(¢) be such that  

¢(x) = x for all x E ~ .  Then for z = x+ya E ¢, we have ¢(z) = ¢(x)+¢(y)¢(a).  

But a E ~ ±  implies ¢(a) E ~ ±  = ~a .  Therefore ¢(a) = pa for some p E 

and, by taking norms, we see that  p E SLI (~ ) .  In fact, we have (Prop. 2.2.1, 

[SV]) 
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PROPOSITION 3.6: The group of automorphisms of £, leaving~ pointwise fixed, 

is isomorphic to SLI(~) ,  the group of norm 1 elements of ~ .  In the above 

notation, C(¢ /~ )  ~- SLI (~). 

We describe yet another subgroup of Aut(¢). Let ~ be as above and ¢ E 

Aut(~).  We can write g = ~ a  as above. Define ¢ E Aut(g) by ¢(x+ya)  = 
¢(x) + ¢(y)a. Then one checks easily that ¢ is an automorphism of ~ that 

extends ¢ on ~ .  These automorphisms form a subgroup of Aut(¢), which (we 

will abuse notation and) we continue to denote by Aut(2).  

PROPOSITION 3.7: With notation as fixed, we have 

G(~, ~)  ~ G(~/~)  ~ Aut(~).  

Proof: Clearly Aut (~)NG(~/~)  = (1) and Aut(~) normalizes G(~/~) .  Now, 

for ¢ E G(~, ~) ,  consider the automorphism ¢ = ~ - 1 .  Then ¢ fixes elements 

of H pointwise and we have ¢ = ¢ ¢  E G(~/~)  x Aut(~). | 

4. Involutions in G~ 

In this section, we discuss the structure of involutions in G2. Let G be a group 

of type G~ over k and ~ be an octonion algebra over k with G = Aut(~). We call 

an element g E G(k) an involut ion if g2 = 1. Hence nontrivial involutions in 

G(k) are precisely the automorphisms of ~ of order 2. Let g be an involution in 

Aut(g). The eigenspace corresponding to the eigenvalue 1 of g E Aut(g) is the 

subalgebra ~ of g of fixed points of g and is a quaternion subalgebra of ~ ([J]). 

The orthogonal complement ~ ±  of ~ in ~ is the eigenspace corresponding to the 

eigenvalue -1 .  Conversely, the linear automorphism of g, leaving a quaternion 

subalgebra ~ of ~ pointwise fixed and acting as multiplication by - 1  on ~± ,  is 

an involutorial automorphism of ~ (see Proposition 3.6). Let p be an involution 

in G(k) and let ~ be the quaternion subalgebra of ~, fixed pointwise by p. Let 

p, = gpg-1 be a conjugate of p by an element g E G(k). Then, the quaternion 

subalgebra ~ '  = g(~) of ~ is fixed pointwise by pl. Conversely, suppose the 

quaternion subalgebra ~ of ~ is isomorphic to the quaternion subalgebra ~r of ~. 

Then, by a Skolem-Noether type theorem for composition algebras (Cor. 1.7.3, 

[SV]), there exists an automorphism g of ~ such that g(~) = ~t. If p denotes the 

involution leaving ~ fixed pointwise, p~ = gpg-1 fixes ~ pointwise. Therefore, 

we have 
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PROPOSITION 4.1: Let ~ be an octonion algebra over k. Then the conjugacy 

dasses of involutions in G = Aut(~) are in bijection with the isomorphism 

classes of quaternion subalgebras of ~. 

COROLLARY 4.1: Assume that 2Br(k), the 2-torsion in the Brauer group of k, 

is trivial, i.e., all quaternion algebras over k are split (for example, cd(k) <_ 1 

fields). Then all involutions in G( k ) are conjugates. 

We need a refinement of a theorem of Jacobson (Th. 2, [J]), due to 

Wonenburger (Th. 5, [W1]) and Neumann ([N]), 

PROPOSITION 4.2: Let ~ be an octonion algebra over a field k of characteristic 

different from 2. Then every element of G is a product of 3 involutions. 

We will study in the sequel the structure of semisimple elements in G(k), in 

terms of involutions. We will show that  a semisimple element g E G(k) is real, 

i.e., conjugate to g-1 in G(k), if and only if g is a product of 2 involutions in 

a(k). 

5. Maximal  tori in SUm 

We need an explicit description of maximal tori in the special unitary group 

of a nondegenerate hermitian space for our work; we discuss it in this section 

(cf. [R], Section 3.4). Let k be a field of characteristic different from 2 and L a 

quadratic field extension of k. Let V be a vector space of dimension n over L. 

We denote by ks a separable closure of k containing L. Let h be a nondegenerate 

hermitian form on V, i.e., h: V × V ) L is a nondegenerate k-bilinear map 

such that  

h(ax, y) = ah(x, y), h(x, f ly)= a(fl)h(x,y), h(x,y) = a(h(y,x)), 

Vx, y E V ,  a,/~ E L, 

where a is the nontrivial k-automorphism of L. Let £ be an 6tale algebra over 

k. It then follows that  the bilinear form T: £ x £ > k, induced by the trace: 

T(x, y) = trE/k(xy) for x, y E £, is nondegenerate. 

LEMMA 5.1: Let L be a quadratic field extension ofk. Let £ be an dtale algebra 

over k containing L, equipped with an involution a, restricting to the non-trivial 

k-automorphism of L. Let .T = £ ~ = {x E £la(x) = x}. Let dimL(£) = n. For 
u E :~*, define 

h(~): £ x £ --+ L 

h (u) (x, y) = trc/L (uxa(y)). 
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Then h (~) is a nondegenerate a-hermitian form on C, left invariant by T(E,~ ) = 

{a E E*[aa(a) = 1}, under the action by left multiplication. 

Proof." That  h (~) is a hermitian form is clear. To check nondegeneracy, let 

h(U)(x,y) = OVy E C. Then, t rE / i (uxa(y ) )  ---- 0 Vy E E, i.e., trc/L(Xy ~) = 

0 Vy ~ E C. Since C is ~tale, it follows that  x = 0. Therefore h (~) is nondegenerate. 

Now let a E T(c,~). We have 

h (u) ((~x, ay) = trE/L (uaxa(ay) )  = t rc / i  (UXa(y)) = h (~) (x, y). 

Hence the last assertion. I 

Remark: We note that  £ = 3 r ®k L. If we put 7 = {x E C[a(x) = -x} ,  then 

C = ~ ' O 7 .  Further, i f L  = k(7) with 72 e k*, then ~-' = )r~. 

Notation: In what follows, we shall often deal with situations when, for an 

algebraic group G defined over k, and for any extension K of k, the group 

G ( K )  of K-rational points in G coincides with G(k) ®k K.  When no confusion 

is likely to arise, we shall abuse notation and use G to denote both the algebraic 

group as well as its group of k-points. We shall identify T(E,a) with its image in 

U(£, h (u)), under the embedding via left homotheties. 

LEMMA 5.2: With notation as in the previous lemma, T(E,a ) is a maximal k- 

torus in U(E, h(~)), the unitary group of the hermitian space (£, h(U)). 

The proof is a tedious, straightforward computation; we omit it here. 

COROLLARY 5.1: Let T(1E,~) = {a e E*Iaa(a ) = 1,det(a) = 1}. Then T~c,~ ) C 

SU(E,  h (~)) is a maximal k-torus. 

THEOREM 5.1: Let k be a field and L a quadratic field extension of k. We 

denote by a the nontrivial k-automorphism of L. Let V be a L-vector space of 

dimension n with a nondegenerate a-hermitian form h. Let T C U(V, h) be a 

maxima/k-torus.  Then there exists ET, an dtale L-algebra of dimension n over 

L, with an involution ah restricting to the nontrivial k-automorphism of L, such 

that 

T = T(c~,~h). 

Moreover, i f  ~T is a field, there exists u E jr ,  such that (V,h) is isomorphic to 

(£T, h (~)) as a hermitian space. 

Proof'. Let A = EndL(V). Then A is a central simple L-algebra. Let CT = 

ZA(T) ,  the centralizer of T in A. Note that  T C £T- The hermitian form h 
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defines the adjoint involution 6rh on A, 

for all x,y E V. 

Isr. J. Math. 

a h : A  ~ A 

h(ah(f)(x) ,  y) = h(x, f (y))  

Then ah is an involution of second kind over L / k  on A 

(cf. [KMRT]). We claim that ah restricts to ET: Let f E ET; we need to show 

ah(f )  E CT, i.e., ah( f ) t  = tah( f )Vt  E T. This follows from 

h(ah(l) t (x) ,  y) =h(t(x),  f (y) ) = h(x, t -1 f (y) ) = h(x, f t  -1 (y) ) 

=h(ah( f ) (x) ,  t - l y )  = h( tah( f ) (x) ,  y). 

We have T C U(V,h) C EndL(V) and ah is an involution on Endn(V), 

restricting to the nontrivial k-automorphism of L. There is a canonical isomor- 

phism of algebras with involutions (Chap. I, Prop. 2.15, [KMRT]) 

(EndL(V) ®k ks,ah) ~- (Endk,(V) × Endk,(V) ,c) ,  

where e(A, B) = (B, A). Since U(V, h) = {A E EndL(V)IAah(A) = 1}, we have 

V(V,h)  ®k ks ~{(A,B) E EndL(V) ®k ks[(A,B) .e(A,B)  = 1} 

= { (A , A -1 ) IA  E Endk,(Y)}. 

We thus have an embedding 

T ®k ks ~ Endks(V) × Endk~(V),A ~ (A ,A-1) .  

To prove ET is ~tale, we may conjugate T ® ks to the diagonal torus in GLn(ks).  

The embedding then becomes 

T ®k ks ~- (ks) n ---+ Mn(ks) x Mn(ks), 

( t l . . .  tn) ~ (diag(t l , . . . ,  tn), diag(t71,. . . ,  tnl)). 

Now, we have 

~T ®k ks = ZA(T)  ®k ks = ZA®kk,(T ®k ks) 

, . . . ,  k s . ZM,,(k°)×M~(k~)({(diag(tl,...,t,~),diag(t1-1 tnl))lti E k;}) = 2n 

Hence CT is an ~tale algebra of k-dimension 2n and L-dimension n. We have 

T C T(Er,~h) and, by dimension count, T = T(cr,ah). We have on V the natural 

left Endn(V)-module structure. Since CT is a subalgebra of Endn(V) and a 

field, V is a left CT-vector space of dimension 1. Let V = ET.V for v ~ 0. 
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Let us consider the dual V* = HomL(V,L) ,  which is a left-gT-vector space of 

dimension 1 via the action: (a . f ) ( x )  = f (a ( x ) ) ,  a E gT, x E V. We consider 

the following elements in V*: 

¢1: V = ET.V > L 

fv h(/(v), v), 
¢2: V = gT.V > L 

f v  ~-~ iT(f). 

Since ~T is separable, both these are nonzero elements of V*. Hence there exists 

u E $~ such that  h( f (v ) ,  v) = t r ( u f ) V f  E ET. We have 

h( f .v ,g .v)  = h ( f ( v ) , g (v ) )  = h (ah(g ) f ( v ) , v )  = t r (uah(g) f )  Vf,  g • gT. 

This will prove the lemma provided we show u E F.  For any f E ST we have 

tr(ah (u) f )  =tr(crh (U).ah (ah ( f )  ) ) = ah (tr(uah ( f )  ) ) 

= a h  ( h ( a h ( f ) ( v ) ,  v )  ) = h(v, a h ( f ) ( v )  ) = h ( f  (v), v) -- t r (u f ) .  

Since CT is separable, the trace form is nondegenerate and hence ah(U) = u. 

The map 

¢: (y, h) Iv / 

is an isometry: 

h (~) ( ¢ ( f v ) ,  O(gv)) = tr(uah (g) f )  = h ( fv ,  gv) 

by the computation done above. II 

COROLLARY 5.2: Let the notation be as fixed above. Let T be a maximal torus 

in SU(V,  h). Then there exists an dtale algebra gT over L of dimension n, such 

that T ~- T 1 ( ET ,cr h ) " 

Remark: The hypothesis in the last assertion in Theorem 5.1, that  ST be a 

field, is only a simplifying assumption. The result holds good even when gT is 

not a field. 

Let T C SU(V, h) be a maximal torus. Then from the proof of Theorem 5.1 

we get ST = ZEnd(v)(T') is an @tale algebra with involution O" h such that  T = 
T 1 . T ~ (cr :h) ,  here, is a maximal torus in U(V, h). 
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LEMMA 5.3: With notation as above, V is an irreducible representation o f T  if 

and only if £T is a field. 

Proof: Suppose £T is not a field. Then 30 ~ f E £T such that  V ~ ker( f)  ~ O. 

Put W = ker( f)  C V, which is a L-vector subspace. We claim that  W is a T 

invariant subspace. Let x E IV, t E T: 

f (x )  = 0 ~ t ( f (x) )  = 0 ~ f ( t (x))  = 0 ~ t(x) E W. 

Hence, T(W)  = W. 

Conversely, let ET be a field and 0 # W C V be a T-invariant L-subspace 

of V. We shall show that  V = W. We know that  V is a one-dimensional 

CT vector space. Thus, it suffices to show that  W is an $T subspace of V. 

Suppose first that  k is infinite. Let t E T(k)  be a regular element (see [Bo], 

Prop. 8.8 and the Remark on page 116). Then gT = L[t] and we have, for 

f ( t )  E gT, f ( t ) (W)  = W, since W is T-invariant. Now let k be finite. Then 

gT is a finite field and its multiplicative group g~ is cyclic. The group T(k), 

being a subgroup of g~, is cyclic. Then a cyclic generator t of T(k) is a regular 

element and, arguing as above, we are done in this case too. | 

We defined the notion of i n d e c o m p o s a b l e  tor i  in the introduction; these 

are tori which cannot be written as a direct product of subtori. 

COROLLARY 5.3: Let T be a maximal torus in SU(V, h). Then T is indecom- 

posable if and only if V is an irreducible representation ofT;  that is, if and only 

if £T is a field. 

Proof: By the above lemma, if V is reducible as a representation of T, CT 

is not a field. Hence it must be a product of at least two (separable) field 

extensions of L, say £T = E1 × " "  × Er. Then from Corollary 5.2, T = T~r = 

T~I × --. × T~,. Hence T is decomposable. Conversely, suppose V is irreducible 

as a representation of T. Then, by the above lemma, ET is a field. Suppose the 

torus T decomposes as T = T1 x T2 into a direct product of two proper subtori. 

Suppose first that  k is infinite. Let t E T(k) be a regular element (see [Bo], 

Prop. 8.8 and the Remark on page 116). Then the minimal polynomial (= 

characteristic polynomial) x(X) of t factorizes over k, as can be seen by base 

changing to ks and conjugating T to the diagonal torus in SL(n).  Therefore 

ET = L[X] /x (X)  is not a field, a contradiction. Hence T is indecomposable. 

When k is finite, the multiplicative group E~ of ET is cyclic and hence T(k) is 
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cyclic. A cyclic generator t of T(k) is then regular and we repeat the above 

argument to reach a contradiction. Hence T is indecomposable. I 

6. Reality in G2 

Let G be a group of type G2 defined over a field k of characteristic ¢ 2. Then, 

there exists an octonion algebra ~ over k such that  G ~ Aut(ff) (Chap. III, 

Prop. 5, Corollary, [Se]). Let to be a semisimple element of G(k). We will also 

denote the image of to in Aut(ff) by to. We write ¢~o for the subspace of trace 0 

elements of ~. In this section, we explore the question if to is conjugate to to 1 

in G(k). We put Vt~ = ker(to - 1) s. Then Vt~ is a composition subalgebra of 

with norm as the restriction of the norm on ~ ([W1]). Let rto = dim(Vto M ~0). 

Then rto is 1, 3 or 7. We have 

LEMMA 6.1 : Let the notation be as fixed above and let to E G(k) be semisimple. 

Then, either to leaves a quaternion subalgebra invariant or fixes a quadratic ~tale 

subalgebra L o f~  pointwise. In the latter case, to E SU(V, h) C G(k) for a rank 

3 hermitian space V over a quadratic field extension L ofk or to E SL(3) C G(k). 

Proof'. From the above discussion, we see that  rto is 1,3 or 7. If r, o = 3, to 

leaves a quaternion subalgebra ~ of ~ invariant. As in Proposition 3.6, writing 

= ~ • ~ a  for a E ~ z ,  N(a) # 0, to is explicitly given by to(x + ya) = 

cxc -1 +(pcyc-1)a for some c E ~ ,  N(c) ~ 0 a n d p  E ~ ,  N(p) = 1. We 

now assume rto = 7. In this case, the minimal polynomial of to on ~o is 

(X - 1) 7. But since to is semisimple, the minimal polynomial of to is a product 

of distinct linear factors over the algebraic closure. Therefore to = 1. In the 

case rio = 1, L = Vto is a two-dimensional composition subalgebra and has 

the form Vto = k.1 ® (Vto M fro), an orthogonal direct sum. Let L M fro = k.7 

with N(7) # 0. Since to leaves ~o and Vto invariant, we have to(7) = 7 and 

hence to(x) = xVx E L, so that  to E G(~/L).  The result now follows from 

Proposition 3.1 and Proposition 3.2. I 

If to leaves a quaternion subatgebra invariant, it is a product of two invo- 

lutions and hence real in G(k). This follows from the following theorem (see 

Wh. 4, [W1]). 

THEOREM 6.1: Let ~ be an octonion algebra. If  g is an automorphism of 

which maps a quaternion subalgebra ~ into itself, then g is a product of two 

involutory automorphisms. 
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COROLLARY 6.1: If  an automorphism g of ~ leaves a nondegenerate plane of 

fro invariant, then it is a product of two involutory automorphisms. 

We discuss the other cases here, i.e., to leaves a quadratic @tale subalgebra L 

of ¢ pointwise fixed. 

1. The fixed subalgebra L is a quadratic field extension of k 

and 

2. The fixed subalgebra is split, i.e., L ~ k x k. 

By the discussion in section 3, in the first case, to belongs to G(¢/L)  

SU(L  ±, h) (Proposition 3.1) and in the second case to belongs to G(g/L)  ~- 

SL(3) (Proposition 3.2). We denote the image of to by A in both of these 

cases. We analyse further the cases when the characteristic polynomial of A is 

reducible or irreducible. 

THEOREM 6.2: Let to be a semisimple element in G(k) and suppose to fixes 

the quadratic @tale subalgebra L of ~ pointwise. Let us denote the image of 

to by A in SU(L ±, h) or in SL(3) as the case may be. Also assume that the 

characteristic polynomial of A over L in the first case and over k in the second, 

is reducible. Then to is a product of two involutions in G(k). 

Proof." Let us consider the case when L is a field extension. Let T be a maximal 

torus in SU(L ±, h) containing to. By Corollary 5.2, there exists an @tale L- 

algebra £T with an involution a and u E ~* such that  (L ±, h) -~ (ST, h(~)); here, 

9 r is the fixed point subalgebra of a in CT- Since the characteristic polynomial 

of A is reducible, we see that  L ± is a reducible representation of T. From 

Corollary 5.3 we see that  ST is not a field. We can write ST ~- 9 r ® L where 5 r 

is a cubic @tale k-algebra but not a field. Let ~- = k x A, for some quadratic 

@tale k-algebra A. Hence ST '~- L x A ® L and a is given by (a, f ®/~) 

((~, f ®/~). Writing u = (ul, u2) where ul E k, the hermitian form h (u) is given 

by h (~) ((l, (~), (/', (~')) = trL/L(lull') + trA®L/n(SU2~') = lull' + trA®L/L(SU25'). 

Hence L x {0} is a nondegenerate subspace left invariant by the action of to E 

T?£T,ah ) --~'~ T~. × T 1A®L, which acts by left multiplication. Therefore to leaves 

invariant a two-dimensional nondegenerate k-plane invariant in ¢~o. The result 

now follows from Corollary to Theorem 6.1. The proof in the case when L is 

split proceeds on similar lines. | 

In general, we have the following 

THEOREM 6.3: Let G be a group of type G2 over a field k of characteristic 

not 2. Then every unipotent element in G(k) is a product of two involutions in 
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G(k). Let g E G(k) be a semisimple dement. Then g is real in G(k) if and only 

if it is a product of two involutions in G(k). 

Proof'. The assertion about unipotents in G(k) follows from a theorem of 

Wonenburger (Th. 4, [Wl]), which asserts that  if the characteristic polyno- 

mial of t E Aut(¢) is divisible by (x - 1) 3, t is a product of two involutory 

automorphisms of ~. 

In view of Theorem 6.2, we need to consider only the semisimple elements in 

SU(L ±, h) or in SL(3) with irreducible characteristic polynomials. By Corol- 

lary 5.3, it follows that such elements lie in indecomposable tori. The result 

follows from the following theorem. I 

THEOREM 6.4: Let to be an dement in G(k) and suppose to fixes a quadratic 

dtale subalgebra L of ~ pointwise. Let us denote the image of to by A in 

SU(L ±, h) or in SL(3) as the case may be. Also assume that the characteristic 

polynomial of A over L in the first case and over k in the second is irreducible. 

Then to is conjugate to to I in G( k ) if and only if to is a product of two involutions 

in a(k) .  

Proo~ We distinguish the cases of both these subgroups below and complete 

the proof in the next two subsections; see Theorem 6.6 and Theorem 6.9. I 

6.1 SU(V, h) C G. We assume that  L is a quadratic field extension of k. Let 

to be an element in G(~/L) with characteristic polynomial of the restriction to 

V = L 1, irreducible over L. We write ~ = L ~ V, where V is an L-vector 

space with hermitian form h induced by the norm on ~. Then we have seen 

that  G(~/L)  -~ SU(V, h) (Theorem 3.1). 

LEMMA 6.2: Let the notation be as fixed above. Let to be an element in G(~/L)  

with characteristic polynomial irreducible over L. Suppose that 3g E G(k) such 

that gtog -1 = to 1. Then g(L) = L. 

Proof" Suppose that  g(L) (t L. Then we claim that  3x E L M ~0 such that  

g(x) • L. For this, let y E L be such that  g(y) ¢ L. Let x = y -  ½tr(y)l. 

Then tr(x) = 0 and if g(x) E L then g(y) E L, a contradiction. Hence we have 

x E L M ¢~ with g(x) ¢_ L. Also, since to(x) = x, we have 

to(g(x)) = gtol(x) -= g(x). 

Let g(x) = a + y, for 0 ~ y E L±; then to(g(x)) = a + to(y) = a + y, 

i.e., to(y) = y. Therefore to fixes an element in L ±. This implies that  the 
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characteristic polynomial of to on L ± = V is reducible, a contradiction. Hence, 

g(L) = L. | 

We recall a construction from Proposition 3.5. Let a E L ± with N(a) ~ O. 

Let ~ = L ® La and Pl: ~ -+ ~ be defined by pl(x + ya) = a(x) + a(y)a. 

Write again ¢ = ~ ® ~b  for b E ~ ±  with N(b) ~ 0 and define p: ¢ --+ ¢ by 

p(x + yb) = a(x) + a(y)b. Then p is an automorphism of ~ of order 2 which 

restricts to L to the nontrivial automorphism of L. The basis 

{fl  = a, f2 = b, f3 = ab} 

of V = L I over L is an orthogonal basis for h. W e  fix th i s  basis  t h r o u g h o u t  

th i s  sec t ion .  Let us denote the matrix of h with respect to this basis by 

H = diag()h, A2, A3) where Ai = h(fi, fi) E k*. Then SU(V, h) is isomorphic to 

SU(H) = {A e SL(3, L)[tAHA = H}. 

THEOREM 6.5: With notation fixed as above, let A be the matrix of  to in 

SU(H) with respect to the Axed basis described above. Let the characteristic 

polynomiM o[ A be irreducible over L. Then to is conjugate to to 1 in G(k), if 

and only if fi is conjugate to A -1 in SU(H),  where the entries of A are obtained 

by applying a on the entries of A. 

Proof." Let g E G(k) be such that  gtog -1 = to 1. In view of Lemma 6.2, we 

have g(L) = L. We have (Prop. 3.5) G(~, L) ~- G(¢/L)  ~ N where N = <  p > 

and p is an automorphism of ¢, described above. Clearly g does not belong to 

G(¢/L) .  For if so, we can conjugate to to to 1 in G(¢/L)  "~ SU(H).  But then the 

characteristic polynomial x (X)  = X 3 - ~tX 2 + aX - 1, where a E L, and ~ = a. 

Hence x ( X )  is reducible, a contradiction. We write g = gPp where gt C G(¢/L) .  

Let B be the matrix of g~ in SU(H).  Then, by a direct computation, it follows 

that  

grog -1 (ao.1 + a l f l  + a2f2 + a3f3) 

= ao.1 + a l B A B - l f l  + a 2 B A B - l f 2  + a3B f lB - l f 3  • 

Also, 

t o l ( ao . l  + a l f l  -]- a2f2 + a3f3) = (ao.1 + a lA-1  f l  -t- a2A- t f2  + a3A- l /3 ) .  

Therefore, if to is conjugate to to 1 in G = Aut(¢),  then .~ is conjugate to A -1 in 

SU(H).  Conversely, let BfitB -1 = A -1 for some B E SU(H).  Let g' E G(E/L) 

be the element corresponding to B. Then g'p conjugates to to to 1. | 
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Let V be a vector space over L of dimension n with a nondegenerate hermitian 

form h. Let H denote the diagonal matrix of h with respect to some fixed 

orthogonal basis. Then, for any A E U(H), we have t A H A  = H. Let A E 

SU(H)  with characteristic polynomial XA(X) = X n + a l X  ~-1 + " "  + a n - i X  + 

(-1) n. Then ( - 1 ) h a / =  an- / fo r  i = 1, . . .  ,n - 1. 

LEMMA 6.3: With notation as above, let A E SU(H)  with its characteristic 

polynomial over L be the same as its minimal polynomial. Suppose A = A1 A2 

with A1,A2 E GL(n ,L)  and ,41A1 = I = ,42A2. Then A1,A2 E U(H). 

Proof: Let H = diag(A1,A2,... ,As), where AI,. . .  ,An E k. We have tAHflt = 

H. Then 

( H A ~ I ) A ( H A I I )  -1 = HA-~IA1A2A1H -1 = H ~ - I H  -1 = tA. 

Since the characteristic polynomial of A equals its minimal polynomial, by (Th. 2 

[TZ]), HA-; 1 is symmetric, i.e., HA~ 1 = t ( H A I  1) = tA~IH.  This implies, 

H = tA1HA11 = tA IHAI .  Hence A1 E U(H). By similar analysis we see that 

A2 E U(H). | 

LEMMA 6.4: With notation as above, let A E SU(H)  with characteristic poly- 

nomial XA(X) = Xn  + a l X n - l  + "" " + a n - I X + ( - 1 )  n over L, equal to its minimal 

polynomial. Then, A = B1B2 with B1,B2 E GL(n ,L)  and BIB1 = I = B2B2. 

Proof: Let A x denote the companion matrix of A, namely 

We have 

A~ if0 0,1,/ ? . . .  0 - - a n - 1  . 

0 . . .  1 -ial / 

( - 1 )  n o . . .  o o / o  o . . .  o - 1  

a,~-i 0 . . .  0 - 1  I 0 0 . . .  - 1  0 
A x = . . . . . . .  A1A2, 

al "-1 . . .  0 0 - 1  0 . . .  0 0 

and A1AI = I = A2A2, using ( - t )~a i  = ~n-~ for i = 1 , . . . , n  - 1. Since 

the characteristic polynomial of A equals its minimal polynomial, there exists 

T E GL(n ,L)  such that A = T A x T  -1. We put B1 = T A x T  -1, B2 = TA2T -1. 

Then A = B1B2, where BIBI = I =/~2B2. | 
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COROLLARY 6.2: Let A E SU(H)  with characteristic polynomial XA(X) over 

L the same as its minimal polynomial. Then, A = BIB2 with B1,B2 E U(H) 

and BIB1 = I = B2B2. 

From this corollary, we get the following 

LEMMA 6.5: Let A E SU(H),  with characteristic polynomial over L equal to 

its minimal polynomial. Then, 

1. ft is conjugate to A -1 in U(H), if and only i rA  = A1A2 with A1,A2 E 

U(H) and A1A1 = I = A2A2; 

2. A is conjugate to A -1 in SU(H),  if and only if A = A1A2 with A1,A2 E 

SU(H)  and AIA1 -- I = t]2A2. 

The following proposition is due to Neumann (IN], Lemma 5). Recall that  we 

have fixed a basis {f l ,  f2, f3} for V = L ± over L in Theorem 6.5. 

PROPOSITION 6.1 : Let ~ be an octonion algebra over k and let L be a quadratic 

field extension of k, which is a subalgebra of ~. An dement t E G(E/L) is a 

product of two involutions in Aut(E), if  and only if the corresponding matrix 

A E SU(H)  is a product of two matrices A1, A2 E SU(H),  satisfying filA1 = 

A2A2 = I.  

We now have 

THEOREM 6.6: Let to be an dement in G(~/L)  and let A denote the image of 

to in SU (H). Suppose the characteristic polynomial of A is irreducible over L. 

Then to is conjugate to to 1 , if and only if to is a product of two involutions in 

G(k). 

Proof: From Theorem 6.5 we have, to is conjugate to to 1, if and only if .4 is 

conjugate to A -1 in SU(H).  From Lemma 6.5 above, ,3, is conjugate to A -1 in 

SU(H) if and only if A = A1A2 with A1,A2 E SU(H)  and ,41A1 = I = A2A2. 

Now, from Proposition 6.1, it follows that  to is a product of two involutions. 
| 

Let V be a vector space over L of dimension n together with a nondegenerate 

hermitian form h. Let A E SU(H).  Let us denote the conjugacy class of A in 

U(H) by C and the centralizer of A in U(H) by Z and let 

LA = {det(X)lX E Z}. 
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LEMMA 6.6: With notation as tixed above, for X , Y  E U(H), X A X  -1 is 

conjugate to Y A Y  -1 in SU(H)  if and only if det(X) _= det(Y)(mod LA). 

Proof: Suppose there exists S • SU(H)  such that  S X A X - 1 S  -1 = Y A Y  -1. 

Then, Y - 1 S X  • Z and det(X) -= det(Y)(mod LA). 

Conversely, let de t (XY -~) = det(B) for B • Z.  Pu t  S = Y B X  -~. Then 

det(S) = 1, S • SU(H)  and Y - 1 S X  = B • Z. Then, y - 1 S X A  = A y - 1 s x  

gives S X A X - 1 S  -1 = Y A Y  -1. | 

LEMMA 6.7: Let to be an element in G(¢ /L)  for L a quadratic [ield extension 

of k and A be the corresponding element in SU(H).  Suppose the characteristic 

polynomial of A is irreducible over L. Then, to is conjugate to to 1 in G(k), if 

and only i f /o r  every X • U(H) such that X f t X  -1 = A -1 , det(X) • L A. 

Proof: We have, by Theorem 6.5, to is conjugate to to I in G(k) if and only if 

is conjugate to A -1 in SU(H).  Let X E U(H) be such that  X f t X  -1 = A -1. 

Then from the above lemma, -4 is conjugate to A -1 in SU(H) if and only if 

det(X) • L/]. | 

COROLLARY 6.3: With notation as t~xed above whenever L1/L;~ is trivial, to is 

conjugate to to 1 in G(k), where L 1 = {a • Lla(~ = 1}. 

Proof: We have L 1 = {a • Lla(~ = 1} = {det(X)lX • U(H)}.  Now let us 

fix Xo • U(H) such that  XofitXo I = A -1. Then, for any X • U(H) such that  

X A X  -1 = A -1, we have X o l X  • ZU(H)(fii). Hence det(X)  • det(X0)L A. But 

since L1/LA is trivial, we have det(X) • L A. From the above lemma, it now 

follows that  to is conjugate to to 1 in G(k). | 

Remark: From the proof above, for any X • U(H) such that  X A X  - 1  = A -1, 

we get X • XoZu(H ) (4).  Since the characteristic polynomial of A is irreducible, 

that  of A is irreducible as well. Therefore Zv(g)(,4) C ZEndL(Y)(A) = L[A] = 

L[T]/ < x~(T)  >. In fact, ZU(H)(A ) = {x • ZEndL(y)(fii)lXah(X ) = 1}. Hence 

we can write X = Xof (A)  for some polynomial f ( T )  • L[T]. 

LEMMA 6.8: Let A • SU(H)  and its characteristic polynomial XA(X) be 

irreducible over L. Let E = L[X]/x;~(X), a degree three tieId extension of 

L. Then L1/L;~ ~-+ L*/N(C*). 

Proof: Define a map 0: L 1 > L*/N(E*) by x ~ xN(C*). We claim that  

ker(¢) = {x e Lllx e N(E*)} = L A = {g(x ) l x  • $*,xa(x) = 1}. Let x • 
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ker(¢), i.e., x = N(y) for some y E £* and xa(x) = 1. Let ~3 = xy- la(y)  E £*, 

then N(~) = x, ~a(~)) = 1. Hence x E L A. Conversely, if N(x) E L~ for some 

x E £* such that  xa(x) = 1 then N(x) E ker(¢). | 

Hence if the field k is C1 (for example, a finite field) or it does not admit degree 

three extensions (real closed fields, algebraically closed fields etc.), L*/N(E*) 

is trivial. From Corollary 6.3, it follows that  every element in G(~/L), with 

irreducible characteristic polynomial, is conjugate to its inverse. In particular, 

combining with Theorem 6.2, it follows that  every semisimpte element in G(k) 

is conjugate to its inverse. 

PROPOSITION 6.2: With notation as above, let L be a quadratic field extension 

of k and let S E SU ( H) be an element with irreducible characteristic polynomial 

over L, satisfying S = S -1 . Let £ = L[X]/xs(X) ,  a degree three field extension 

of L, and assume L1/N(£ 1) is nontrivial, where L 1 = {x E Llxa(x) = 1}, £1 = 

{x E £[xa(x) = 1} and a is the extension of the nontrivial automorphism of L 

to £. Then there exists an element A E SU(H) with characteristic polynomial 

the same as the characteristic polynomial of S, which cannot be written as 

A = AIA2 where Ai = Av~ 1 and Ai E SU(H). The corresponding element t in 

G(~/L) is not a product of two involutions in G = Aut(~) and hence not real 

in G. 

Proof: Let b E L 1 such that  b 2 ¢ N(£1).  Put  D = diag(b, l ,1)  and A = 

DSD-1; then A belongs to SU(H). Now suppose A = A1A2 with .4i = A~ -1 

and Ai E SU(H). T h e n A =  A1A2 = DSD -1 = DSDD -2. P u t T 1  = DSD 

and T2 = D-2;  then Ti = Ti -1. Since A2AA~ 1 = ~-1  and T2AT~ -1 = .~-1, we 

have Tf lA2  E Zu(v,h)(A), i.e., T~-IA2 = f (A)  for some f ( X )  E L[X] (see the 

Remark after Corollary 6.3). Then b 2 = det(T2 -1) = det(T2-1A2) = de t ( f (A))  E 

N(£*) ,  a contradiction. | 

Remark: If we choose S in the theorem above with characteristic polynomial 

separable, then the element A, constructed in the proof, is a semisimple element 

in an indecomposable maximal torus, contained in SU(H), which is not real. 

We recall that  any central division algebra of degree three is cyclic (Theorem, 

Section 15.6, [P]). Let L be a quadratic field extension of k. Let F be a degree 

three cyclic extension of k and we denote E = F.L. Let us denote the generator 

of the Galois group of F over k by r .  Let A = F G F u ( ~ F u  2 with udu -1 = T(d) 

for all d E F and u 3 = a E k*. Then A, denoted by (F, T, a), is a cyclic algebra of 

degree three over k. Recall also that  (F, T, a) is a division algebra if and only if 



Vol. 145, 2005 REALITY PROPERTIES OF CONJUGACY CLASSES IN G2 179 

a f~ NF/k(F*).  We denote the relative Brauer group of F over k by B ( F / k ) ,  i.e., 

the group of Brauer classes of central simple algebras over k, which split over 

F.  We define a map ¢: B ( F / k )  ~ B ( E / L )  by [(F, T, a)] ~ [(E, T, a)] (which 

is the same as the map [D] ~ [D ® L]). This map is well defined (Section 15.1, 

Cor. c, [P]) and is an injective map since 

ker(¢) = {[(F,T,a)] E B(F/k ) [a  • k*,a • NE/L(E*)}  

= {[(F,z,a)] • B(F/k )]a  • NF/k(F*)} .  

We have a commutative diagram, 

k*/NF/k(F*)  ~ B ( F / k )  

L* IN  l~ .  ~- / E/L~-- ) ~ B ( E / L )  

The vertical maps are injective in the above diagram. We have the following 

exact sequence, 

1 - -~  (NE/L(E*)k*) /NE/L(E*)  ~ L*/NE/L(E*)  ~ L 1 / N E / L ( E  1) ----+ 1 

where (NE/L(E*)k*) /NE/L(E*)  -~ k*/NF/k(F*).  Hence, from the commuta- 

tivity of the above diagram, we get B ( E / L ) / ¢ ( B ( F / k ) )  ~- L1/NE/L(E1) .  

This shows L 1 / N E / L ( E  1) is nontrivial, if and only if there exists a central 

division algebra D over L which splits over E, and it does not come from a 

central division algebra over k, split by F. We recall a proposition from [K] 

(Chapter V, Prop. 1). 

PROPOSITION 6.3: Let k be a number field and L a quadratic field extension 

of k. Let F be a cyclic extension of degree m over k, which is linearly disjoint 

from L, over k. Then there exists a central division algebra ( F L / L, T, a) over L 

of degree m, with an involution of second kind, with a E L 1. 

COROLLARY 6.4: Let k be a number field and L a quadratic field extension of 

k. Let F be a cyclic extension of degree 3 over k. Let us denote E = F.L. Then 

L 1/WE/L (E 1 ) is nontrivial. 

Proof: By the proposition above, there exists a degree three central division 

algebra (E,T ,a)  over L with a E L I. Therefore a ~ NE/L(E*).  1 

We proceed to construct an example of the situation required in Proposi- 

tion 6.2. 
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PROPOSITION 6.4: Let k be a number field. There exist octonion algebras 

over k such that not every (semisimple) element in Aut(~) is real. 

Proof: We use Proposition 6.2 here. Let L be a quadratic field extension of 

k. Let F be a degree three cyclic extension of k. Then we have E = F.L, a 

degree three cyclic extension of L. We denote the extension of the nontrivial 

automorphism of L over k to E over L by a, which is the identity automorphism 

when restricted to F.  Sometimes we write ~ = a(x) for x E E. Let us consider 

E as a vector space over L. We consider the trace hermitian form on E defined 

as follows: 
t r :ExE- - - - -+  L 

tr(x,  y) = trE/L (x~). 

The restriction of this form to F is the trace form tr: F x F ~ k, given by 

tr(x, y) = trF/k(xy).  We choose an orthogonal basis o f F  over k, say {f l ,  f2, f3}, 

with respect to the trace form, and extend it to a basis of E / L .  Then the bilinear 

form tr with respect to this basis has diagonalization < 1, 2, 2 > (Section 18.31, 

[KMRT]). We have disc(tr) = 4 E NL/k(L*).  Hence (E, tr) is a rank 3 hermitian 

space over L with trivial discriminant and SU(E ,  tr) is isomorphic to S U ( H )  

where H = diag(1, 2, 2). We choose an element 1 ~ a E T 1 - L 1, where 

T; = {x E EIx2 = 1, NE/L(X) = 1}. Let us consider the left homothety map, 

l~:E ) E 

la(x) = ax. 

Since a E T 1 - L 1, the characteristic polynomial x ( X )  of la is the minimal 

polynomial of a over L, which is irreducible of degree 3 over L. Next we prove 

that  la E SU(E ,  tr). This is so since 

= t r ( a x ,  = trE/L(aza ) = = t r ( x ,  y ) .  

Let S = (sij) denote the matrix of l~ with respect to the chosen basis {fl ,  re, f3 } 

of F over k. Then the matrix of la is S = (s~y). Also, since a5 = 1, we have 

SS  = 1. Thus we have a matrix S in S U ( H ) ,  for H = <  1, 2, 2 >, satisfying the 

conditions of Proposition 6.2. 

Now, let L = k(?) with ?2 = c E k*. We write Q = k G F .  Since (F, tr) 

is a quadratic space with trivial discriminant, we can define a quaternionic 

multiplication on Q (Prop. 2.3); denote its norm by NQ. We double Q with 

72 = c E k* to get an octonion algebra E = Q ® Q with multiplication 

(x, y) (u, v) = (xu + c~y, vx + y~t) 
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and the norm N((x, y)) = NQ(x) - cNQ(y). We choose a basis {1, a, b, ab} of Q, 

orthogonal for NQ, so that  NQ has diagonalization < 1, 1,2, 2 > with respect 

to this basis. This gives a basis 

{(1,O),(a,O),(b,O),(ab, O),(O, 1),(O,a),(O,b),(O, ab)} 

of ~ and the diagonalization of N with respect to this basis is 

< 1, 1,2, 2, -c ,  - c ,  -2c,  - 2 c  > .  

We observe that  the subalgebra k • k C ¢ is isomorphic to L and L ± = F × F is 

a three-dimensional vector space over L with hermitian form < 1, 2, 2 >. Hence 

SU(L ±, h), with respect to the basis {(a, 0), (b, 0), (ab, 0)} of L ±, is SU(H) for 

H = <  1, 2, 2 >. Hence, from the discussion in previous paragraph, we have an 

element of required type in SU(L ±, h). 
By Corollary 6.4, L1/N(E 1) is nontriviah It follows from Proposition 6.1 

and Proposition 6.2 that  not all (semisimple) elements in Aut(¢), which are 

contained in the subgroup SU(E, tr), are real. | 

COROLLARY 6.5: Let k be a totally real number field. Then there exists an 
octonion division algebra ~ over k such that not every element in Aut(~) is 
real. Hence there exist (semisimple) elements in Aut(~) which are the product 
of three involutions but not the product of two involutions. 

Proof: We recall from Lemma 2.1 that  if the k-quadratic form Qs ,  correspond- 

ing to the bilinear form B: E × E ~ k, defined by B(x,y) = trE/L(X~) + 
trE/L(~y), is anisotropic, then the octonion algebra ~, as constructed in the 

proof of the above proposition, is a division algebra. In case when k is a totally 

real number field and L = k(i), the diagonalization of qu is < 1, 2, 2, 1,2, 2 >, 

which is clearly anisotropic over k. | 

Remark: We note that  the quadratic form QB as above can be isotropic for 

imaginary quadratic number fields. For example, if k = Q(~/L--22), Qu has 

diagonalization < 1 , - 1 , - 1 , - c ,  c,c >, which is isotropic. Hence the octonion 

algebra E in this case is split. Therefore, indecomposable tori in subgroups 

SU(V, h) C Aut(E) exist in all situations, whether ~ is division or not. And in 

either case, there are nonreal elements. 

6.2 SL(3) C G. Let us assume now that  L ~ k x k. We have seen in section 

3 that  G(~/L) -~ SL(U) ~ SL(3). Let to be an element in G(~/L) and denote 
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its image in SL(3) by A. We assume that the characteristic polynomial of 

A E SL(3) is irreducible over k. In this case, the characteristic polynomial 

equals the minimal polynomial of A. 

LEMMA 6.9: Let the notation be fixed as above. Let to be an dement in G(~/L) 

and its image in SL(3) be denoted by A. Let the characteristic polynomial of A 

be irreducible over k. Suppose that 3h E G = Aut(~), such that htoh -1 = to 1 . 

Then h(L) = L. 

Proof: Suppose that h(L) ~_ L. Then we claim that 3x E L M ¢o such that 

h(x) ¢_ L. For this, let y E L be such that h(y) • L. Let x = y -  l tr(y)l .  

Then tr(x) = O, and if h(x) E L then h(y) E L, a contradiction. Hence we have 

x E L M ~o with h(x) ¢. L. Also, since to(x) = x, we have 

t o ( h ( x ) )  = hto l(x) = h(x). 

Therefore, to fixes h(x) E Eo and hence fixes a two-dimensional subspace 

span{x, h(x)} pointwise, which is contained in ~o C E. Hence the characteristic 

polynomial of to on ~o has a degree 2 factor. But the characteristic polynomial 

f ( X )  of to on Eo has the factorization 

I ( X )  : (X - 1)x(X)x*(X),  

where x(X)  is the characteristic polynomial of to on the three-dimensional k- 

subspace U of ~ and X* (X) is its dual polynomial (see Sec. 3, [W1]). Since 

x(X)  is irreducible by hypothesis, this leads to a contradiction. Hence any 

h E Ant(E), conjugating to to tO 1 in G, leaves L invariant. I 

THEOREM 6.7: With notation fixed as above, let A be the matrix of to in 
SL(3) with irreducible characteristic polynomial. Then to is conjugate to to 1 

in G = Aut(E), if and only irA is conjugate to tA in SL(3). 

Proof." Let h E G be such that htoh -1 = to 1. In view of the lemma above, 

we have h(L) = L. We may, without loss of generality (up to conjugacy by an 

automorphism), assume that 

~ = { ( ;  v ~ ) i a , ~ E k ; v ,  w E k 3 }  w i t h L - - { (  0 ~ ) ] a , / ~ E k } .  

By Proposition 3.3, h belongs to G(~/L) )~ H. Clearly h does not belong to 

G(~/L), for if so, we can conjugate to to to 1 in SL(U), which implies in partic- 

ular that the characteristic polynomial x(X) of to on U is reducible, a contra- 

diction. Hence h = gP for some g E G(E/L). Let A denote the matrix of to on 
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U in SL(3) and B that  of g. Then, a direct computation gives 

and 

Therefore, 

htoh_ 1 (:  v ) :  (tB_IAtB w Btd-lflB-lv) ~ 

to I ( :  Vfl): (tA~w A-iv) . 

htoh -1 = to I ~ A = B t A B  -1. 

Hence, to is conjugate to to 1 in G(k) if and only if A is conjugate to tA in 

SL(3). | 

We now derive a necessary and sufficient condition that  a matrix A in SL(3), 

with irreducible characteristic polynomial, be conjugate to tA in SL(3). We 

have, more generally, 

THEOREM 6.8: Let A be a matrix in SL(n) with characteristic polynomial 

XA(X) irreducible. Let E = k[X]/XA(X) -~ k[A] be the field extension of k of 

degree n given by XA(X). Then A is conjugate to tA in SL(n), / l  and only if, 
for every T E GL(n) with T A T  -1 = tA, det(T) is a norm from E. 

Proof: Fix a To E GL(n) such that  ToATo 1 = tA and define a map, 

{T e Mn(k)ITA = tAT} --4 k[A] 

T F-~ TolT.  

This map is an isomorphism of vector spaces, since if T E Mn(k) is such that  

TA = tAT then T o l T  belongs to Z(A) (= k[A], as the characteristic polynomial 

of A is the same as its minimal polynomial). To prove the assertion, suppose 

To E SL(n) conjugates A to tA. But with the above bijection, T o l T  = p(A) 

for some p(A) E k[A], p(X) E k[X]. Hence det(p(A)) = det(T), i.e., de tT  is a 

norm from E. 

Conversely, suppose there exists T C GL(n) with T A T  -1 = tA and det(T) is 

a norm from E. Then there exists p(X) E k[X] such that  det(p(A)) = det(T) -1. 

Thus det(Tp(A)) = 1 and (Tp(A))A(p(A)-IT -1) = T A T  -1 = tA. | 

In the case under discussion, A E SL(3) has an irreducible characteristic 

polynomial. Hence, E ~- k[A] ~- ZM3(k ) (A) is a cubic field extension of k. We 

combine the previous two theorems to get 



184 A. SINGH AND M. THAKUR Isr. J. Math. 

COROLLARY 6.6: Let A be a matrix in SL(3) with irreducible characteristic 

polynomial. With notation as above, suppose k*/N(E*) is trivial Then A can 

be conjugated to tA in SL(3) and hence to can be conjugated to to I in Aut(¢).  

If k a C1 field (e.g., a finite field) or k does not admit cubic field extensions 

(e.g., k real closed, algebraically closed), the above criterion is satisfied auto- 

matically. Hence every element in G(E/L), for L = k x k, with irreducible 

characteristic polynomial over k, is conjugate to its inverse in G(k). In particu- 

lar, combining this with Theorem 6.2, we see that every semisimple element in 

G(k) is real. 

We shall give a cohomological proof of reality for G~ over fields k with 

cd(k) _< 1 (see the remarks later in this section). 

LEMMA 6.10: Let A be a matrix in SL(n)  with irreducible characteristic 

polynomial Then A is conjugate to tA in SL(n) if and only if A is a prod- 

uct of two symmetric matrices in SL(n).  

Proof: Any matrix conjugating A to tA is necessarily symmetric (Th. 2 [TZ]). 

Let S be a symmetric matrix which conjugates A to tA in SL(n),  i.e., S A S  -1 = 

tA. Let B = SA = tAS. Then B is symmetric and belongs to SL(n).  Hence 

A = S - 1 B  is a product of two symmetric matrices in SL(n).  Conversely, let A 

be a product of two symmetric matrices from SL(n) ,  say A = $1S2. Then $2 

conjugates A to tA. | 

We need the following result from ([W1]) (cf. also [L]), 

PROPOSITION 6.5: Let ~ be a (split) Cayley algebra over a field k of charac- 

teristic not 2. Let L be a split two-dimensional subalgebra of ~. An element 

E G(~/L)  is a product of two involutory automorphisms if and only if the cor- 

responding matrix in SL(3) can be decomposed into a product of two symmetric 

matrices in SL(3). 

We have 

THEOREM 6.9: Let to be an element in G(~/L),  with notation as in this section. 

Let us assume that the matrix A of to in SL(3) has irreducible characteristic 

polynomial. Then to can be conjugated to to 1 in G = Aut(~), i f  and only if to 

is a product of two involutions in G(k). 

Proof: The element to can be conjugated to to 1 in G if and only if A can be 

conjugated to tA in SL(3) (Theorem 6.7). This is if and only if A is a product 
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of two symmetric matrices in SL(3) (Lemma 6.10). By Proposition 6.5, this is 

if and only if to is a product of two involutions in Aut(~). | 

In view of these results, to produce an example of a semisimple element of 

G = Aut(~) that is not conjugate to its inverse in Aut(~), we need to produce 

a semisimple element which is a product of three involutions but not a product 

of two involutions. We shall show that, for the split form G of G2 over k = Q or 

k = Qp, there are semisimple elements in G(k) which are not conjugate to their 

inverses in G(k). We shall end this section by exhibiting explicit elements in G2 

over a finite field, which are not real. These necessarily are not semisimple or 

unipotent (see the remarks at the end of this section). We adapt a slight variant 

of an example in ([W1], ILl) for our purpose; there, the issue is bireflectionality 

of G2. 

LEMMA 6.1 1 : Let k be a field and let S be a symmetric matrix in SL(3) whose 

characteristic polynomial p ( X )  is irreducible over k. Let E = k[X]/  < p (X )  >, 

the degree three field extension of  k given by p (X) .  Further, suppose that 

k * / N ( E* ) is not trivial. Then there exists a matrix in SL(3), with characteristic 

polynomial p(X), which is not a product of two symmetric matrices in SL(3). 

Proof." Let b e k* such that b 2 ¢_ N(E*) .  Consider D = diag(b, l ,1) ,  a 

diagonal matrix, and put A = D S D  -1. Then A E SL(3). We claim that A 

is not a product of two symmetric matrices from SL(3). Assume the contrary. 

Suppose A = D S D  -1 = $1S2 where $1, $2 E SL(3) and symmetric. Then 

A = D S D  -1 = ( D S D ) D  -2 = $1S2. 

Let T1 = D S D ,  T2 = D -2. ThentTi  = T i ,  i = 1,2 a n d A  = T1T2 = $1S2. 

Therefore, 

tA  = T2T1 = T2AT~ 1 = $2S1 ---- $2AS2 -1. 

Since the characteristic polynomial of A is irreducible, by the proof of Theo- 

rem 6.8, D:S2 = T ~ S ~  E Z ( A )  = k[A] ~- E,  which implies $2 = D - 2 f ( A )  for 

some polynomial f ( X )  E k[X]. Taking determinants, we get 

1 = det $2 = det D -2 det(f(A)), 

i.e., b 2 = det(f(A)) E N(E*) ,  contradicting the choice of b E k. Hence A cannot 

be written as a product of two symmetric matrices from SL(3). | 
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Remark: In view of Theorem 6.9 and its proof, the element A corresponds 

to an element in Aut(~) which cannot be conjugated to its inverse. If we 

choose the matrix S, as in the statement of the lemma above, to have sep- 

arable characteristic polynomial, the matrix A, as constructed in the proof, 

corresponds to a semisimple element in an indecomposable torus contained in 

SL(3) C G = Aut(~), which is not real. 

THEOREM 6.10: Let G be a split group of type G2 over k = Q or Qp. Then 
there exists a semisimple element in G2(k) which is not conjugate to its inverse. 

Proof: Real i ty  over Qp: Let k = Qp, p ~ 2. Let p(X) be an irreducible 

monic polynomial of degree n, with coefficients in Qp. By a theorem of Bender 

([Bel]), there exists a symmetric matrix with p(X) as its characteristic poly- 

nomial, if and only if, for the field extension E = Qp[X]/(p(X)), there exists 

a in E* such that (-1)n(n-1)/2N(a) belongs to (~ )2 .  We choose E as the 

(unique) unramified extension of Qp of degree 3. Then, E is a cyclic exten- 

sion Of Qp. We choose/~ E E*, N(/~) = 1 so that E = Qp(/~). Le tp (X)  be 

the minimal polynomial of ~ over Qp. Then, applying Bender's result, there 

is a symmetric matrix A over Qp, with characteristic polynomial p(X). Since 

N(/~) = 1, A belongs to SL(3,Qp). We have q~p/N(E*) ~ Z/3Z (see Sea. 17.9, 

[P]), hence ( ~ ) 2  ¢ N(E). Therefore we are done by Lemma 6.11, combined 

with Proposition 6.5 and Theorem 6.9. | 

This example shows that there exist semisimple elements in G = Aut(~) 

over k = Qp, which are not a product of two involutions and hence must be a 

product of three involutions, by ([W1]). In particular, reality for G2 fails over 

Qp (Theorem 6.3). 

Rea l i ty  over ~. A polynomial p(X) E K[X] is called K-real if every real 

closure of K contains the splitting field of p(X) over K. Bender (Th. 1, [Be2]) 

proves that whenever we have K, an algebraic number field, and p(X) a monic 

K-polynomial with an odd degree factor over K, then p(X) is K-real if and 

only if it is the characteristic polynomial of a symmetric K-matrix. 

Let p(X) = X 3 - 3X - 1. Then all roots of this polynomial are real but 

not rational. This polynomial is therefore irreducible over Q and, by Bender's 

theorem stated above, p(X) is the characteristic polynomial of a symmetric 

matrix. Note that K = Q[X]/ < p(X) > is a degree 3 cyclic extension of Q. 

We recall that for a cyclic field extension K of a k, the relative Brauer group 

B(K/k) ~- k*/NK/k(K*) (ref. Sec. 15.1, Prop. b, [P]). It is known that if K/k  
is a nontrivial extension of global fields, then B(K/k) is infinite (ref. Cor. 4, 
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[FKS]). Therefore, for K chosen as above, Q*/N(K*) is not trivial. Hence all 

conditions required by Lemma 6.11 are satisfied by the polynomial p (X)  and 

we get a semisimple element to E G2(Q) which is not conjugate to its inverse, 

using Lemma 6.11, Proposition 6.5 and Theorem 6.9. I 

Real i ty  over Fq: Let k = F~ be a finite field. We have shown (Theorem 6.3) 

that semisimple elements and unipotent elements in G(k) are real in G(k). We 

now construct an element in G(k) which is not conjugate to its inverse. Let 

be the split octonion algebra over k; assume that the characteristic of k is not 2 

or 3. We use the matrix model for the split octonions, as introduced in section 

2. Let L be the split diagonal subalgebra of ~. We assume that k contains 

primitive third roots of unity. We have G(~ /L)  ~ SL(3). Let w be a primitive 

third root of unity in k. Let 

A = (i o) w 1 . 
0 

Then A E SL(3) and the minimal polynomial (=characteristic polynomial) of A 

is p (X)  = ( X -  w) 3. Let b E k be such that the polynomial X 3 -  b 2 is irreducible 

over k (this is possible due to characteristic assumptions). Let D = diag(b, 1, 1) 

and B -- D A D  -1. Then B E SL(3) and has the same minimal polynomial 

as A. Note that B is neither semisimple nor unipotent. Let t E G(~ /L)  be 

the automorphism of ~ corresponding to B. It is clear that the fixed point 

subalgebra of t is precisely L. 

THEOREM 6.11: The element t C G(~ /L)  as above is not real. 

Proof: If not, suppose for h E G(k), hth -1 = t -1. Then, since t fixes precisely 

L pointwise, we have h(L) = L. Therefore h E G(¢, L) ~- G (¢ / L )  ~ H,  where 

H =<  p > is as in Proposition 3.3. If h E G(¢ /L ) ,  conjugacy of t and t -1 by 

h would imply conjugacy of B and B -1 in SL(3). But this cannot be, since 

w is the only root of p(X) .  Thus h = gp for g C G(¢ /L ) .  Now, by exactly 

the same calculation as in the proof of Theorem 6.7, conjugacy of t and t -1 in 

G(k) is equivalent to conjugacy of B and tB  in SL(3). Let C B C  -1 = t B  with 

C e SL(3). Let 

T =  -1  . 
0 

Then T E SL(3) is symmetric and T A T  -1 = tA. Hence ,4 is a product of two 

symmetric matrices in SL(3), say A -- T1T2 with Ti E SL(3), symmetric (see 
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the proof of Lemma 6.10). But CBC -1 = ~B gives (DCD)A = tA(DCD). 

Therefore, by an argument used in the proof of Theorem 6.8, using the fact that  

the characteristic polynomial is equal to the minimal polynomial of A, we have 

DCD = T2f(A) for some polynomial f E k[X]. Taking determinants, we get 

b 2 = det ( f (A))  = f(w) 3. But this contradicts the choice of b. Hence t is not 

real. I 

A similar construction can be done for the subgroup SU(V, h) C G. We 

continue to assume that  k is a finite field with characteristic different from 2, 3. 

We first note that  the (split) octonion algebra contains all quadratic extensions 

of k. We assume that  2 is a square in k and that  k contains no primitive cube 

roots of unity. Let L be a quadratic extension of k containing a primitive cube 

root of unity w. Let b E L with NL/k(b) = 1 such that  the polynomial X 3 - b 2 

is irreducible over L. Let c~ E L with NL/k(O~ ) = --1. Let 

1 032 2 1 4  
A =  

1 -  - 3 -  ¼/ 

then A E SU(3) and the minimal polynomial (=characteristic polynomial) of 

A over L is (X - w) 3. Let F be a cubic extension of k and E = F.L. Then 

E is a cyclic extension of L and we have the trace hermitian form as defined 

in Proposition 6.4, on E. We fix an orthogonal basis for F over k for the trace 

bilinear form and extend it to a basis of E over L. Then the trace hermitian 

form has diagonalization < 1, 1, 1 >. We construct E -- L G E with respect 

to the hermitian space (E, tr), as in Section 3. Then SU(L ±, h) ~- SU(3). Let 

D = diag(b, 1, 1) and B = DAD -1. Then B E SU(3) and has the same minimal 

polynomial as A. Note that  B is neither semisilnple nor unipotent. Let t denote 

the automorphism of E corresponding to B. Then the fixed point suhalgehra of 

t in E is precisely L. We have 

THEOREM 6.12: The element t E G(E/L) as above is not rea l  

Proof." Suppose t is real in G(k). Then there is h E G(k) such that  hth -1 = 

t -1. Since the fixed point subalgebra of t is L, we have h(L) = L. Thus, 

by Proposition 3.5, h E G(E,L) ~ G(E/L) >~ H, where H = <  p > is as in 

Proposition 3.5. If h E G(E/L), then B and B -1 would be conjugate in SU(3), 

but  that  cannot be since w is the only eigenvalue for B. Hence h = gp for 

g E G(E/L). Then, conjugacy of t and t -1 in G(k) is equivalent to conjugacy of 

and B - :  in SU(3), by the same calculation as in the proof of Theorem 6.5. By 
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Lemma 6.5, this is if and only i f B  = B1B2 with Bi E SU(3) and BiBi = 1. But 

then B = DAD -1 = B1B~ and hence A = (D-1B1D-1)(DB2D) = A1A2, say. 

Then Ai E U(3) and A---TAi = 1. Let C E SU(3) be such that C-BC -1 = B -1. 

Then CDAD-1C -1 = DA-1D -I.  This gives (D-1CD-I)-A(DC-1D) = A -1. 

Hence, by Lemma 6.5, A = TIT2 with Ti E SU(3), TiT~ = 1. Therefore, by 

a similar argument as in the remark following Corollary 6.3, we must have 

T1A; 1 = f (A)  for a polynomial f ( X )  E L[X]. Taking determinants, we get 

b -2 = f(co) 3, contradicting the choice of b. Therefore t is not real in G(k). 

I 

Remarks: 

1. Our results in fact show that if a semisimple element in G(k), for a group 

G of type G2, is conjugate to its inverse in G(k), the conjugating element 

can be chosen to be an involution. The same is true for unipotents (these 

are always conjugate to their inverses). 

2. One can give a simple cohomological proof of reality for G2 over k with 

cd(k) _< 1. Recall that cd(k) < 1, if and only if, for every algebraic 

extension K of k, Br(K)  = 0 ([Se] Chap. 3, Prop. 5). Let g E G(k) 

be semisimple and T be a maximal k-torus of G containing g (cf. [Sp], 

Corollary 13.3.8). Let N(T)  be the normalizer o f t  in G and W = N ( T ) / T  

the Weyl group of G relative to T. We have the exact sequence of groups 

1 -+ T --+ N(T)  --+ W --+ 1. 

The corresponding Galois cohomology sequence is 

1 --+ T(k) -+ N(T)(k)  --+ W(k) --+ HI(k ,T)  --+.... 

Now, if cd(k) _< 1, by Steinberg's theorem (see [S]), HI(k ,T)  = 0. Hence 

the last map above is surjective homomorphism of groups. Therefore the 

longest element Wo in the Weyl group W of G~, which acts as - 1  on the 

set of positive roots with respect to T ([B], Plate IX), lifts to an element 

h of N(T)(k).  Hence, over ks, we have hth -1 = t -1 for all t E T. But 

h E G(k), hence the conjugacy holds over k itself. Using Theorem 6.3, we 

get the following interesting result. 

THEOREM 6.13: Let cd(k) < 1 and G be a group of type G2 over k. Then 

every semisimple element in G(k) is a product of two involutions in G(k). 
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3. The  obstruct ion:  From our results, we see that semisimple elements 

belonging to decomposable tori are always product of two involutions and 

hence real in G(k). For semisimple elements belonging to an indecompos- 

able maximal torus T, the obstruction to reality is measured by L 1/N(C1), 

where T C SU(V, h) ~ SU(£, h (~)) is given by T = E 1 and C is a cubic 

field extension of L. In the other case, when T C SL(3), the obstruc- 

tion is measured by k*/N(~F*), where Jr is a cubic field extension of k. 

In both cases, the obstruction has a Brauer group interpretation. When 

T C SL(3) C G is an indecomposable maximal torus, coming from a 

cyclic cubic field extension ~" of k, the obstruction to reality for elements 

in T(k) is the relative Braner group B(Jr/k). For an indecomposable 

torus T C SU(E, h ~) C G, where E is a cubic cyclic field extension of L, 

the obstruction is the quotient B(~/L)/¢(B(~F/k), where ~" is the sub- 

field of C, fixed by the involution a on E, and ¢ is the base change map 

B(~/k)  --~ B(£/L). 
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